683 research outputs found

    Service Development Life Cycle for Hybrid Cloud Environments

    Full text link
    With increasing adoption of cloud computing there is a need to provide methodological and tool support for the development of enterprise applications that utilize cloud services. Traditional approaches that assume that services are developed and deployed on-premise are not suitable for hybrid cloud environments, where a significant part of enterprise applications is delivered in the form of cloud services provided by autonomous cloud providers. In this paper we describe a Service Development Life Cycle for hybrid cloud environments and a prototype system designed to support this life cycle

    Service repository for cloud service consumer life cycle management

    Full text link
    © IFIP International Federation for Information Processing 2015. With rapid uptake of various types of cloud services many organizations are facing issues arising from their dependence on externally provided cloud services. In order to enable operation in this rapidly evolving environment, end user organizations need new methods and tools that support entire life-cycle of cloud services from the perspective of service consumers. Service repositories play a key role in supporting service consumer SDLC (Systems Development Life-Cycle) maintaining information that is used during the various life-cycle phases. In this paper we briefly describe service consumer SDLC and propose a design of service repository that supports information requirements throughout the service life-cycle

    Genetic landscape of autism spectrum disorder in Vietnamese children

    Get PDF
    Autism spectrum disorder (ASD) is a complex disorder with an unclear aetiology and an estimated global prevalence of 1%. However, studies of ASD in the Vietnamese population are limited. Here, we first conducted whole exome sequencing (WES) of 100 children with ASD and their unaffected parents. Our stringent analysis pipeline was able to detect 18 unique variants (8 de novo and 10 ×-linked, all validated), including 12 newly discovered variants. Interestingly, a notable number of X-linked variants were detected (56%), and all of them were found in affected males but not in affected females. We uncovered 17 genes from our ASD cohort in which CHD8, DYRK1A, GRIN2B, SCN2A, OFD1 and MDB5 have been previously identified as ASD risk genes, suggesting the universal aetiology of ASD for these genes. In addition, we identified six genes that have not been previously reported in any autism database: CHM, ENPP1, IGF1, LAS1L, SYP and TBX22. Gene ontology and phenotype-genotype analysis suggested that variants in IGF1, SYP and LAS1L could plausibly confer risk for ASD. Taken together, this study adds to the genetic heterogeneity of ASD and is the first report elucidating the genetic landscape of ASD in Vietnamese children

    Semi-autonomous wheelchair developed using a unique camera system configuration biologically inspired by equine vision

    Full text link
    This paper is concerned with the design and development of a semi-autonomous wheelchair system using cameras in a system configuration modeled on the vision system of a horse. This new camera configuration utilizes stereoscopic vision for 3-Dimensional (3D) depth perception and mapping ahead of the wheelchair, combined with a spherical camera system for 360-degrees of monocular vision. This unique combination allows for static components of an unknown environment to be mapped and any surrounding dynamic obstacles to be detected, during real-time autonomous navigation, minimizing blind-spots and preventing accidental collisions with people or obstacles. This novel vision system combined with shared control strategies provides intelligent assistive guidance during wheelchair navigation and can accompany any hands-free wheelchair control technology. Leading up to experimental trials with patients at the Royal Rehabilitation Centre (RRC) in Ryde, results have displayed the effectiveness of this system to assist the user in navigating safely within the RRC whilst avoiding potential collisions. © 2011 IEEE

    Increase in regularity and decrease in variability seen in electroencephalography (EEG) signals from alert to fatigue during a driving simulated task.

    Full text link
    Driver fatigue is a prevalent problem and a major risk for road safety accounting for approximately 20-40% of all motor vehicle accidents. One strategy to prevent fatigue related accidents is through the use of countermeasure devices. Research on countermeasure devices has focused on methods that detect physiological changes from fatigue, with the fast temporal resolution from brain signals, using the electroencephalogram (EEG) held as a promising technique. This paper presents the results of nonlinear analysis using sample entropy and second-order difference plots quantified by central tendency measure (CTM) on alert and fatigue EEG signals from a driving simulated task. Results show that both sample entropy and second-order difference plots significantly increases the regularity and decreases the variability of EEG signals from an alert to a fatigue state

    Effects of mental fatigue on 8-13Hz brain activity in people with spinal cord injury.

    Full text link
    Brain computer interfaces (BCIs) can be implemented into assistive technologies to provide 'hands-free' control for the severely disabled. BCIs utilise voluntary changes in one's brain activity as a control mechanism to control devices in the person's immediate environment. Performance of BCIs could be adversely affected by negative physiological conditions such as fatigue and altered electrophysiology commonly seen in spinal cord injury (SCI). This study examined the effects of mental fatigue from an increase in cognitive demand on the brain activity of those with SCI. Results show a trend of increased alpha (8-13Hz) activity in able-bodied controls after completing a set of cognitive tasks. Conversely, the SCI group showed a decrease in alpha activity due to mental fatigue. Results suggest that the brain activity of SCI persons are altered in its mechanism to adjust to mental fatigue. These altered brain conditions need to be addressed when using BCIs in clinical populations such as SCI. The findings have implications for the improvement of BCI technology

    Combining ICA Clustering and Power Spectral Density for Feature Extraction of Mental Fatigue of Spinal Cord Injury Patients

    Full text link
    © 2019 IEEE. This paper presents the combination of clustering-based independent component analysis (ICASSO) and power spectral density (PSD) as a features extractor of mental fatigue from spinal cord injury (SCI) patients. Initially, the results show that SCI and abled-bodied groups have no differences in EEG for alert and mental fatigue states. Further, the coefficient determination (R2) is calculated for testing the variation of data alert vs. fatigue on the SCI group, resulting in a lower R2 for proposed combination of ICASSO and PSD method compared to the PSD method only. With the lower R2 values, this shows that the proposed method ICASSO and PSD is able to provide superior distinction for separating fatigue vs. alert data variation. The statistical significance is found across four EEG bands and EEG channels

    Using EEG spatial correlation, cross frequency energy, and wavelet coefficients for the prediction of Freezing of Gait in Parkinson's Disease patients

    Full text link
    Parkinson's Disease (PD) patients with Freezing of Gait (FOG) often experience sudden and unpredictable failure in their ability to start or continue walking, making it potentially a dangerous symptom. Emerging knowledge about brain connectivity is leading to new insights into the pathophysiology of FOG and has suggested that electroencephalogram (EEG) may offer a novel technique for understanding and predicting FOG. In this study we have integrated spatial, spectral, and temporal features of the EEG signals utilizing wavelet coefficients as our input for the Multilayer Perceptron Neural Network and k-Nearest Neighbor classifier. This approach allowed us to predict transition from walking to freezing with 87 % sensitivity and 73 % accuracy. This preliminary data affirms the functional breakdown between areas in the brain during FOG and suggests that EEG offers potential as a therapeutic strategy in advanced PD. © 2013 IEEE

    Channels selection using independent component analysis and scalp map projection for EEG-based driver fatigue classification

    Full text link
    © 2017 IEEE. This paper presents a classification of driver fatigue with electroencephalography (EEG) channels selection analysis. The system employs independent component analysis (ICA) with scalp map back projection to select the dominant of EEG channels. After channel selection, the features of the selected EEG channels were extracted based on power spectral density (PSD), and then classified using a Bayesian neural network. The results of the ICA decomposition with the back-projected scalp map and a threshold showed that the EEG channels can be reduced from 32 channels into 16 dominants channels involved in fatigue assessment as chosen channels, which included AF3, F3, FC1, FC5, T7, CP5, P3, O1, P4, P8, CP6, T8, FC2, F8, AF4, FP2. The result of fatigue vs. alert classification of the selected 16 channels yielded a sensitivity of 76.8%, specificity of 74.3% and an accuracy of 75.5%. Also, the classification results of the selected 16 channels are comparable to those using the original 32 channels. So, the selected 16 channels is preferable for ergonomics improvement of EEG-based fatigue classification system

    Classification of driver fatigue in an electroencephalography-based countermeasure system with source separation module

    Full text link
    © 2015 IEEE. An electroencephalography (EEG)-based counter measure device could be used for fatigue detection during driving. This paper explores the classification of fatigue and alert states using power spectral density (PSD) as a feature extractor and fuzzy swarm based-artificial neural network (ANN) as a classifier. An independent component analysis of entropy rate bound minimization (ICA-ERBM) is investigated as a novel source separation technique for fatigue classification using EEG analysis. A comparison of the classification accuracy of source separator versus no source separator is presented. Classification performance based on 43 participants without the inclusion of the source separator resulted in an overall sensitivity of 71.67%, a specificity of 75.63% and an accuracy of 73.65%. However, these results were improved after the inclusion of a source separator module, resulting in an overall sensitivity of 78.16%, a specificity of 79.60% and an accuracy of 78.88% (p < 0.05)
    • …
    corecore